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Sensitivity Analysis in RIPless Compressed Sensing

Abdolreza Abdolhosseini Moghadam, Mohammad Aghagolzadeh, Hayder Radha

Abstract— Sensitivity analysis in optimization theory explores
how the solution to a particular optimization problem changes
as the objective function or constraints of such optimization
problem perturb. A recent and yet important class of opti-
mization problems is the framework of compressed sensing
where the objective is to find the sparsest solution to an under-
determined and possibly noisy system of linear equations. In
this paper, we show that by utilizing some tools in sensitivity
analysis, namely Invariant Support Sets (ISS), one can improve
certain developed results in the field of compressed sensing.
More specifically, we show that in a noiseless and RIP-less
setting [11], the recovery process of a compressed sensing
framework is a binary event in the sense that either all vectors
with the same support and sign pattern can be recovered from
their compressive samples or none can be estimated correctly.
However, in a noisy and RIP-less setting, recovering only one
signal from its limited noisy samples guarantees that there exist
signals (possibly even with different supports and sign patterns)
and noise vectors that shall be recovered with good accuracies
by using Lasso.

Index Terms—sensitivity analysis, compressed sensing,
compressive sampling, Invariant Support Set.

I. INTRODUCTION

An important optimization problem which appears in a
wide range of applications [1], [2], [3], [4], [5] is the problem
of compressed sensing [6], [7], [8], [9], [10], [11], where the
objective is to recover the sparsest (i.e. mostly zero) vector
x ∈ Rn from limited linear samples y = Ax where A ∈
Rm×n, and by limited we mean that the number of samples
is less than the size of the vector x, i.e. m < n. On the other
hand, sensitivity analysis [13], [14], [16] in optimization
problems and systems of equations in general, investigates
how the solution to an optimization problem or that system
of equation changes by perturbation in constraints or the
objective function. Despite the importance of such notion
in the post calculation and analytical phase, to the best of
our knowledge, no attempts has been made so far to deploy
that kind of analysis in the compressed sensing framework.
In this paper, we show that certain sensitivity analysis tools
improve some solid results already developed in the field of
compressed sensing.

It is well known that the success of finding the sparsest
solution that satisfies the system of linear equation y = Ax
heavily depends on the quality of the sensing matrix A. Early
papers in the field of compressed sensing [6], [7] showed that
if the matrix A has a property called Restricted Isometry
(RIP), then the sparsest solution to the noiseless system of

*Abdolreza Abdolhosseini Moghadam (abdolhos@msu.edu, correspond-
ing author), Mohammad Aghagolzadeh (aghagol1@msu.edu) and Hayder
Radha (radha@msu.edu) are with the Department of Electrical and Com-
puter Engineering, Michigan State University, East Lansing, MI, USA.

y = Ax has the minimum `1 norm, and hence the sparsest
vector could be found by linear programming. In a noisy
setting, where equations are contaminated by the noise vector
ε (i.e. y = Ax + ε), a popular technique (which provably
works) to recover x from y is unconstrained Lasso [12],
which can be cast as a quadratic programming optimization
problem.

After the introduction of RIP, other sufficient conditions
to guarantee successful recovery were proposed for the
matrix A (for instance Null Space Property (NSP) [17]).
However, proving or verifying that a matrix has RIP or
NSP with the minimal number of rows (m) turns out to
be quite challenging or even impossible except for a few
ensembles of well-known matrices such as matrices with
entries following a Gaussian distribution. In the more recent
work of [11], authors showed that as long as the sensing
matrix A has isotropy and incoherence properties (see [11]
for definitions), then the matrix A should be a “good” sensing
matrix candidate for the compressed sensing framework.
What signifies that work is the fact that, those conditions are
much weaker than RIP or NSP and more importantly much
easier to verify. Clearly achieving such strong result in [11]
should not be free and indeed, the universality of matrices
with RIP is given up in that work1. More specifically, that
work shows that the probability of recovering a fixed but
arbitrary signal x from compressive samples y = Ax is high
(for instance at least 1 − O(1)/n where n is the length of
the unknown vector x), but such matrix may not recover
all imaginable sparse vectors. In this paper, by using simple
arguments, we show that isotropy and incoherence properties
have even greater consequences and in fact, recovering only
a fixed but arbitrary signal from its compressive samples
deterministically guarantees that there are possibly infinitely
many other signals, sometimes even with different supports
(from the recovered one) which could be recovered from
their compressive samples as well and still the quality of
recovery will be high. To that end, we use the notion of
“Invariant Support Set” (ISS) [13], [14]. Broadly speaking,
ISS studies under which perturbations in the constraints
of an optimization problem, the support of the solution
to that perturbed optimization problem stays unchanged.
In a noiseless scenario, we show that, if the compressed
sensing framework can exactly recover a signal x from pure
compressive samples y = Ax then any other signal u with
the same support and sign pattern of x, could be recovered
exactly from q = Au. This extends the applicability of

1Universality of a pair of sensing matrix and a decoder means that, the
pair of decoder and the fixed sensing matrix could recover any sufficiently
sparse vector from its compressive samples.
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[11] from “a fixed but arbitrary signal” to “all signals with
the same support and sign pattern”. In the noisy scenario,
we show that if the compressed sensing framework has
successfully recovered a signal x from noisy compressive
samples y = Ax+ε and if such recovery was not by chance2,
then there exist infinitely many other signals (even with
supports different from x) and noise vectors, for instance u
and ξ respectively for which, Lasso [12] returns an accurate
estimate of u from noisy samples q = Au+ ξ.

This paper is organized as follows: in Section II, we show
how ISS might be utilized for the sensitivity analysis of the
compressed sensing framework. Section III presents some
numerical simulations and Section IV concludes the paper.

II. SENSITIVITY ANALYSIS IN COMPRESSED
SENSING

Before proceeding to the main results, we introduce some
notations used in this paper. For a natural number m, we
define the set [m] := {1, 2, . . . ,m}. For sub-matrix selection,
we adopt Matlab notations. For instance, let A ∈ Rm×n be an
m×n real-valued matrix, p ⊆ [m] and q ⊆ [n]. Then by A:,p

(and Aq,: respectively) we mean sub-matrix of A which is
formed by selecting columns (and rows) indexed by those in
p (and q). Cardinality of a set l is denoted by Card{l}. The
support of a vector t, denoted by Support{t} is the set of
indices where t is non-zero, i.e. Support{t} := {i : ti 6= 0}.
By lc we mean the complement of the set l. For simplicity of
notation and without loss of generality, in this paper we have
assumed that the unknown vector of interest to be recovered
is non-negative (xi, ui ≥ 0, ∀i ∈ [n]). The extension to
the general case, where signals can take negative values is
straightforward.

We build our contribution on top of the RIPless theory
of [11] where we assume that entries of the sensing matrix
A ∈ Rm×n are i.i.d from a distribution F with the following
two conditions:

1) Isotropy condition: The distribution F is zero-mean
with variance 1/m.

2) Incoherence property: If a ∼ F then either determin-
istically or with high probability |a|2 < µ(F ) where
µ(F ) is the “coherence parameter” of the distribution
of F . The smaller this value is, the fewer number
of samples (m) would be required for the recovery
process. As in [11], we assume that the matrix A has
µ(F ) = O(1/

√
m).

In the following two subsections, we discuss consequences
of sensitivity analysis and existence of invariant support sets
in the noiseless and noisy recovery cases, respectively.

A. Noiseless setting

Assume that, A ∈ Rm×n and x is a non-negative k-sparse
vector (‖x‖0 = k) of length n where k < m < n. In the
noiseless case, a compressed sensing framework estimates
the original vector x from samples y = Ax as x̂ where

2In the sense that, A was ill-conditioned but ‖Ax‖ ≈ ‖x‖ for that
particular x.

x̂ = arg min
z

1T z s.t. y = Az, z � 0 (1)

Here, 1T is an all-one row vector with size n and z � 0
implies that all entries of z are non-negative.

Let LP (A, y) be the solution to the linear programming
optimization problem of (1), i.e. LP (A, y) is a vector with
the minimal `1 norm that satisfies y = Ax̂. The ISS interval
of LP (A, y) is the set of all vectors {∆y ∈ Rm} such that
Support{LP (A, y)} = Support{LP (A, y + ∆y)}.

The following Theorem proves that given a fixed sensing
matrix A and in a noiseless setting, the recovery process of
all vectors with the same support and sign pattern is a binary
event in the sense that either all or none of signals with the
same sign pattern and support could be recovered from their
compressive samples. In other words, the recovery process
in the noiseless setting is independent of the values of the
signal, and instead depends on the support and sign pattern
of that signal which sounds reasonable.

Theorem 1. Assume that the matrix A has weak-RIP
property in [11] (or estimates E1−E4 in the same paper)
and there exist a vector x with Support{x} = T such that
LP (A, y = Ax) = x. Then, for any other vector u with
the same support Support{u} = T and sign pattern, we
would have:

LP (A, q = Au) = u

Proof. Let x̂ = LP (A, y). Then by assumptions of the theo-
rem, x̂ = x and of course Support{x̂} = Support{x} = T .
If the perturbation vector of ∆y = Au − Ax belongs to
the ISS interval of LP (A, y) then it means that if we solve
the perturbed problem of û = LP (A, y + ∆y) = LP (A, q)
then Support{û} = Support{x̂} = T by the definition
of ISS. In words, in this case, the support of the vector is
estimated exactly correct (note that Support{u} = T as
well). If that happens, since A is non-singular on column
indices T (in fact, assumptions of E1 − E4 in [11] imply
that A:,p is near isometry in the noiseless case), thus û must
be u. To that end, by theorem 2.5 in [13] we need to find
a non-negative vector r such that A:,T rT = y + ∆y = Au.
Clearly that vector exist which is simply r = u, since by the
assumption Support{u} = T and u � 0. Now, in a general
case when signals can take negative values, the compressed
sensing formulation for the recovery process is

x̂ = arg min
z
‖z‖1 s.t. y = Az

However, one can re-format the above equation into the
canonical form of

x̂p, x̂n = arg min
zp,zn

1T

[
zp
zn

]
s.t. y =

[
A −A

] [ zp
zn

]
, zp, zn � 0

and form the final estimate as x̂ = x̂p − x̂n. It should be
clear that in this general case, we are still working with
non-negative vectors x̂p and x̂n and consequently, our ISS

882



arguments for the formulation of (1) will hold in this case
as well. �

Note that Theorem 1 is more general than the notion
of “a fixed but arbitrary signal” in [11] which derives the
probability of recovery for only one fixed signal x. Although,
it can be argued that all signals with the same support and
sign pattern share the same exact and inexact dual certificates
(see [11] for definitions) and using that fact, one can derive
a bound on the error of the estimate ‖û − u‖. Nevertheless
and as shown above, our proof is much simpler due to the
sensitivity analysis.

In the following, we prove that if the recovery of x from
noisy samples y = Ax+ ε had been successful (in the sense
that the estimate x̂ has the property that ‖x − x̂‖ = O(ε)),
then either deterministically or at least with much higher
probabilities than [11], infinitely many other signals (which
possibly could have supports different from x) could be
accurately recovered from their limited compressive samples
as well.

B. Noisy setting

For the noisy case and also when the vectors to be
recovered are compressible rather than exactly sparse, an
approach to recover a signal x from noisy measurements
y = Ax + ε is utilizing the unconstrained Lasso [12]
formulation:

x̂ = arg min
b

1

2
‖y −Ab‖22 + λ‖b‖1 (2)

Here, λ is a fixed regularization parameter that can balance
the sparsity of the estimation ‖x̂‖0 against the discrepancy
of the estimate y − Ax̂. Again let us consider the case
when the unknown vector x is assumed to be non-negative
and exactly sparse. Let QP (A, y, λ) be the solution to the
following equivalent but canonical unconstrained Quadratic
Programming (QP) problem of (2):

x̂ = arg min
b
CT b+

1

2
bTQb s.t. b � 0 (3)

Where
C = −AT y + λ1, Q = ATA (4)

The dual problem of above is in the form of

x̂, ŝ = arg max
b,s
−1

2
bTQb

s.t. s−Qb = C, b, s � 0 (5)

In summary, to recover x from noisy samples y = Ax+ε,
one declares x̂ = QP (A, y, λ) as an estimate of x given
a fixed regularization parameter λ. Let us use p to de-
note the support of the estimate x̂ (p = Support{x̂} =
Support{QP (A, y, λ)}). Note that, since this time we are
working in the noisy realm, the event that the support of the
estimate is exact (i.e. the event of Support{x} = p) is very
unlikely and in practice p is much larger than the support
of the sparse vector x. In fact, in the noisy setting, p is not
necessarily a subset of Support{x}. However, the converse
(Support{x} ⊂ p) usually holds if the recovery process has

been successful. Here, we assume that this case happens
in the recovery of x (see [19], [20] for some conditions
on the support recovery). Now, let us find ISS interval of
QP (A, y, λ) which is the set:

{
∆y :
Support{QP (A, y, λ)} = Support{QP (A, y + ∆y, λ)}

}
Note that, this set is always non-empty as the trivial zero

solution for ∆y belongs to this set. Clearly, we are interested
in the case when ∆y is non-zero. We show that this would
be the case and more importantly, if the recovery of x had
been successful in the sense that

‖x−QP (A, y, λ)‖ = O(‖ε‖)

then, corresponding problems in the ISS interval of
QP (A, y, λ) could be solved with good precision as well
in the same sense. In contrast to the noiseless setting and as
stated before, the recovery of a vector x from noisy samples
y = Ax + ε could guarantee the recovery of signals with
supports possibly different from Support{x}. The benefit of
using such sensitivity analysis is that otherwise for each new
support and sign pattern one must find exact or inexact dual
certificates [11] which exist with a probability of (at least)
1−O(1)/n. Although such probability is high, it might not
be sufficiently high or comparable with our result. This can
be shown by noting that Card{Support{x̂}} could be as
high as m and there are

(
m
k

)
possible cases just for supports

of size k within Support{x̂}, and hence, the probability that
dual certificates for all these possible supports exist could
be very small at the end (if the probability of 1 − O(1)/n
is used without any improvement). In contrast, steps in our
approach mostly hold either deterministically or at least with
much higher probabilities. And finally, our error bound could
have smaller constants when compared to the original work
in [11] when proper regularization parameters are set and the
matrix A is well conditioned.

To utilize results from Invariant Support Sets, we need
the following lemma which states Qpp := AT

:,pA:,p has an
inverse for p = Support{QP (A, y, λ)}.

Lemma 2. Let x̂ be the unique minimizer to QP (A, y, λ)
and define p = Support{x̂}. Then Card{p} ≤ m and A:,p

is full rank.

Proof. For now assume that Card{p} > m or A:,p is not
full-rank. In both cases, the null-space of A:,p is not empty
and there exists a vector h ⊆ p such that A:,ph = 0. Define

t := min
i∈Support{h}

| x̂i
hi
|

Now consider two vectors of x̂+ th and x̂− th. Let l =
{i : hi > 0} be indices where h is positive and define H :=
t|h| (i.e. Hi = thi for i ∈ l and Hi = −thi when i ∈
Support{h}/l). Note that all entries of x̂p are always non-
negative and x̂i ≥ Hi. Therefore, |x̂i + hi| = x̂i +Hi when
i ∈ l and |x̂i + hi| = x̂i − Hi in i ∈ lc = Support{h}/l.
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Since x̂ was the unique solution to the optimization problem
of QP (A, y, λ), we have

1

2
‖y −Ax̂‖22 + λ‖x̂‖1 <

1

2
‖y −A(x̂+ th)‖22 + λ‖x̂+ th‖1

and also

1

2
‖y −Ax̂‖22 + λ‖x̂‖1 <

1

2
‖y −A(x̂− th)‖22 + λ‖x̂− th‖1

However, since h is in the null-space of A, we have A(x̂+
th) = A(x̂− th) = Ax̂. This means that ‖x̂‖1 < ‖x̂+ th‖1
and ‖x̂‖1 < ‖x̂ − th‖1 simultaneously. Assuming ‖x̂‖1 <
‖x̂+ th‖1 means∑

i∈p
x̂i <

∑
i∈l

(x̂i +Hi) +
∑
i∈lc

(x̂i −Hi)

and hence ‖Hl‖1 > ‖Hlc‖1. Similarly ‖x̂‖1 < ‖x̂− th‖1
means that∑

i∈p
x̂i <

∑
i∈lc

(x̂i +Hi) +
∑
i∈l

(x̂i −Hi)

This translates to ‖Hlc‖1 > ‖Hl‖1 which contradicts
‖x̂‖1 < ‖x̂ + th‖1. This means that, if Card{p} > m
or A:,p is not full-rank then one can find a vector z (in
here either th or −th) in the null-space of A:,p such that
‖x̂ + z‖1 < ‖x̂‖1, attaining a lower objective function
of 1

2‖y − A(x̂ + z)‖22 + λ‖x̂ + z‖1 which contradicts the
assumption that x̂ is the unique minimizer to QP (A, y, λ).
Thus both Card{p} ≤ m and A:,p is full-rank. �

In the following theorem, we derive characteristics of
signals u and noise vectors ξ that lead to perturbations
∆y = A(u− x) + (ξ− ε) residing in the ISS of QP (A, y =
Ax+ ε, λ).

Theorem 3. Assume that the matrix A has weak-RIP
property in [11] (or estimates E1−E4 in the same paper).
Furthermore, assume that x̂, the unique minimizer to
QP (A, y = Ax + ε, λ) satisfies ‖x − x̂‖ = O(‖ε‖). Then
ISS of QP (A, y, λ) is not empty if ‖A:,p‖ is sufficiently
small for p := Support{x̂}.

Proof. By Lasso formulation and our assumptions ∀i ∈ p :
x̂i > 0. We need to find for which signal u and noise vector
ξ, Support{û := QP (A, q = Au + ξ, λ)} would stay at p.
To that end, let us define:

C{x} = −AT y + λ1

C{u} = −AT q + λ1

∆x = u− x
∆ε = ξ − x

∆C = C{u} − C{x} = AT (y − q) = −AT (A∆x+ ∆ε)

z = {1, 2, . . . , n}/p
Qpz = AT

:,pA:,z

Qpp = AT
:,pA:,p

In summary, if ∆y := q − y = A∆x + ∆ε belongs to
the ISS of QP (A, y, λ), then Support{QP (A, q = y +
∆y, λ)} = p by definition. As shown in [14], to find such
ISS interval, it is required to find non-negative vectors û and
s{u} which satisfy the following two equations

−Qppûp = C{u}p = C{x}p + ∆Cp

s{u}z = QT
pzûp + C{u}z (6)

Note that, since x̂ = QP (A, y, λ), there exists a non-
negative vector s{x}, with the support on z = [n]/p = pc

such that

−Qppx̂p = C{x}p , s{x}z = QT
pzx̂p + C{x}z

Since A:,p is full rank (see Lemma 2), Qpp = AT
:,pA:,p has

an inverse. Consider the vector û which at indices p equals
to

ûp = (−Qpp)−1C{u}p

and is zero in other indices (i.e. z = [n]/p). As [16], let us
use v{i} to denote the i-th row of −Q−1pp and note that

∀i ∈ p : x̂i = v{i}C{x}p > 0

Similarly, for all i ∈ p

ûi = v{i}C{u}p = v{i}(C{x}p + ∆Cp) = x̂i + v{i}∆Cp (7)

Using full-rank property of Qpp = AT
:,pA:,p, one can

represent any vector in RCard{p} in terms of columns of
Qpp. Let us define

∆ε̂ := −Q−1pp A
T
:,p∆ε = −A+

:,p∆ε, ∆x̂ := −Q−1pp ∆x

where by A+
:,p we mean the pseudo-inverse of A:,p. Clearly

‖∆ε̂‖ ≤ ‖A+
:,p‖‖∆ε‖ and ∆x̂‖ ≤ ‖Q−1pp ‖‖∆x‖. Since the

recovery of x has been successful and the support of the
estimate x̂ was p, hence it is very unlikely that ‖A:,p‖
(and hence ‖Q−1pp ‖ and ‖A+

:,p‖) to be very high. In fact, if
Card{p} − k is not too big, then A:,p has good condition
number due to weak-RIP. Nevertheless, plugging these values
into (7) yields:

ûi = x̂i + ∆x̂i + ∆ε̂i (8)

For now let us pause in here and focus on s{u}z , which is
by definition:

s{u}z = QT
pzûp + C{u}z

= QT
pz(x̂−Q−1pp ∆Cp) + C{x}z + ∆Cz

= s{x}z −QT
pzQ

−1
pp ∆Cp + ∆Cz

Using the same arguments for ∆x̂, one can define ∆Ĉ :=
Q−1pp ∆C where clearly ‖∆Ĉ‖ ≤ ‖Q−1pp ‖‖∆C‖. Therefore

s{u}z � s{x}z − (‖∆Cz‖∞ + ‖QT
pz∆Ĉp‖∞)1
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Where by �, we mean entry-wise greater than operator.
By off support incoherency (see Lemma 2.4 in [11]), it is
straightforward to verify that:

Pr
(
‖QT

pz∆Ĉp‖∞ ≥ t‖∆Ĉp‖2
)
< n

−3

2+ 6
µ logn

for
t =

µ log n√
m

= O(
1

k
)

As in [11], here we have assumed µ (the coherency
parameter of distribution of the entries of A) is O(1/

√
m).

Let us assume that ‖Q−1pp ‖ ≤ 1
t = O(k). Then by properties

of the norm operator

s{u}z � s{x}z − (‖∆Cz‖2 + t‖∆Ĉp‖2)1

� s{x}z − (‖∆Cz‖2 + ‖∆Cp‖2)1 (9)

Note that ‖∆Cz‖2 + ‖∆Cp‖2 = ‖∆C‖2 and hence
‖∆Cz‖ + ‖∆Cp‖ ≤

√
2‖∆C‖, which gives us the final

inequality

s{u}z � s{x}z −
√

2‖∆C‖21 (10)

Having (10) and (8) and recalling that s{x}z and x̂p are
both strictly positive, it should be clear that if ‖∆C‖ is not
too big then one can find non-zero configurations for ∆C

(or equivalently signal u and noise vector ξ) where s{u}z and
ûi will both be always positive which finally proves that ISS
of QP (A, y, λ) is not empty. �

In the following, we prove that with a proper regularization
parameter λ, the corresponding signals in the ISS of an
already recovered signal are guaranteed to be recovered with
low errors as well.

Theorem 4. Suppose that x̂ = QP (A, y = Ax + ε, λ) has
the support on p = Support{x̂} and Support{x} ⊆ p
and ‖x − x̂‖ = O(‖ε‖). Let q = Au + ξ and assume
Support{u} ⊆ p and ∆y = q − y belongs to ISS of
QP (A, y, λ). Then the error of the estimate of û =
QP (A, u, λ) is in the form of

‖u− û‖ ≤ ‖(AT
:,pA:,p)−1‖(λ

√
m+ ‖AT

:,p‖‖ξ‖)

Proof. If ∆y belongs to ISS of QP (A, y, λ), then by defi-
nition of ISS, Support{û = QP (A, q, λ)} = p as well and
therefore

ûp = −(AT
:,pA:,p)−1(−AT

:,pq + λ1)

where 1 is an all one vector with size of Card{p}. Recalling
that q = Au + ξ = A:,pup + ξ and the fact that A:,p is full
rank, it can be concluded that

ûp = up + (AT
:,pA:,p)−1(AT

:,pξ − λ1)

Since u is supported on p

‖û− u‖ ≤ ‖A+
:,p‖‖ξ‖+ λ

√
m‖(AT

:,pA:,p)−1‖

�

It should be noted that the term λ
√
m in the error bound

(as opposed to what it seems), is not very large. Let us show
that with an example. Without any loss of generality assume
that we are recovering a unit-norm vector and as in [11],
the regularization parameter λ equals to 10σ

√
log n where

σ is the standard deviation of the entries in the noise (here
the vectors ε and ξ). It should be clear that since we are
working in a normalized setting (i.e. x is unit norm and
the expected value of the gram matrix of A is the identity
matrix), then pure noiseless samples Ax and Au should
have a norm around one as well. Since the dimension of
noise (either ε or ξ) is m, we expect that for a successful
recovery, the variance of the noise distribution (σ2) to be
considerably smaller than 1/m, since otherwise, on average
the energy of the noise is either equal or larger than pure
samples (E

(
‖ε‖22

)
= E

(
‖ξ‖22

)
= mσ2 ≥ 1). Therefore, in

this assumed normalized case, we expect that λ to be much
smaller than 10

√
(log n)/m and consequently λ

√
m should

be much smaller than 10
√

log n. Also, it is important to note
that λ needs to be smaller than ‖AT y‖∞ since otherwise for
λ ≥ ‖AT y‖∞, x̂ would be fixed at zero which is clearly
wrong [15].

Corollary 5. If A has weak-RIP of order Card{p}, then
estimate of û has the following error for a small positive
constant δ

‖û− u‖ ≤ 1

1− δ
(λ
√
m+

√
1 + δ‖ξ‖)

Proof. By the definition of weak-RIP:
√

1− δ ≤ ‖A:,p‖ ≤√
1 + δ. Plugging such value into Theorem 4 proves the

claim. �

III. SIMULATION RESULTS

For our simulations, we could have adapted well-studied
matrices with RIP (e.g. Gaussian ensembles) as sensing
matrices A since they surely would have isotropy and inco-
herence properties as well. However, we have intentionally
utilized SERP matrices (introduced in [21]) in the sensing
mechanism. The reason for such selection is that, SERP ma-
trices do not have RIP of a proper order with m = O(k log n)
rows. However, they admit isotropy and incoherency prop-
erties (although the desirable value of µ = O(1/

√
m) is not

achievable with m = O(k log n). Broadly speaking, SERP
matrices are real-valued sparse matrices where each column
is non-zero in d = O(log n) random row indices and each
non-zero entry is a zero mean Gaussian random variable with
the variance of 1/d. We have set d = 5 log n for matrix
generation in our simulations. Also for solving LP (A, y)
and QP (A, y, λ), we have used L1-LS algorithm [18].

In practice, even when one attempts to recover an exactly
sparse vector x ∈ Rn from compressive samples y ∈ Rm

(whether it’s noisy or noiseless), LP (A, y) and QP (A, y, λ)
virtually always return compressible3 estimates x̂. This is
mainly due to finite hardware precision, insufficient number

3By compressible we mean that most of entries have small magnitudes
instead of being exactly zero.
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of iterations in optimization algorithms and similar related
issues. Hence if one wants to simulate our claims about ISS
then it will be always observed that solutions to the perturbed
and original optimization problems would be both non-zero
on all entries. Therefore, ISS would trivially hold true, since
for instance

Support{LP (A, y)} = Support{LP (A, y + ∆y)} = [n]

On the other hand, variations in the support of the solution to
an optimization problem might not be abstracted into a single
number due to its dimension. To address these concerns, we
needed to define some notations and functions, presented in
here:

1) For a natural number z and a vector û, T (z, û) is the
support of top z entries of û with the largest magni-
tudes. Hence if H[z](.) denotes the hard-thresholding
operator which keeps z largest coefficients of its ar-
gument then, T (z, û) = Support{H[z](û)}. Clearly
T (i, û) ⊆ T (i+ 1, û).

2) For a natural number z and two vectors x̂ and û, define

f(z, û, x̂) = min b

s.t. T (z, û) ⊆ T (b, x̂) (11)

In other words, all top z largest entries of û, can
be found in top f(z, û, x̂) largest entries of x̂ and
furthermore, f(z, û, x̂) is the minimal value with such
property.

It can be easily verified that if magnitudes of two vectors û
and x̂ have exactly the same pattern, then f(z, û, x̂) should
be equal to z. Note that, this condition is much stronger
than just to say that top l% coefficients of û and x̂ have
the same support for some value of l. For instance assume
that x̂ = [3 2 1 0]T . Then top three largest coefficients of
û = [2 1 3 0]T and x̂ have the same support. However,
stating that f(z, û, x̂) = z, implies that |û1| ≥ |û2| ≥ |û3|
(i.e. the same magnitude pattern in x̂).

Recall that in this paper, m is the number of rows in A,
n denotes the length of the unknown vector x (and clearly
the number of columns of A), k is the number of non-zero
entries of x, the noise variance is shown by σ2 and the
regularization parameter of Lasso is λ. Given a fixed set of
parameters, we run the following algorithm: we generate a
random SERP matrix A, a unit norm, non-negative vector x
with a random support and magnitudes and a Gaussian noise
vector ε. Depending on the noise variance, we estimate it by
x̂ = LP (A, y) or x̂ = QP (A, y, λ) for y = Ax + ε. To
generate the perturbed signal u, we randomly change x in
α indices among support of x and make it non-zero in β
extra random indices among T (2k, x̂)/Support{x}. Hence,
Support{x} ⊆ Support{u} and Card{Support{u}} =
Card{Support{x}} + β. After this step, we normalize u
and make sure that u would remain non-negative as well.
In our simulation, there will be no perturbations in noise
(∆ε = ξ − ε = 0) to limit enormous degrees of freedom
in simulations. To have an idea on how similar or distinct
are vectors x and u in our simulation, we report the Signal

to Noise Ratio (SNR) between x and u = x + ∆x in the
following. Let û be the estimate of a compressed sensing
framework for u from samples q = Au+ ε. If ISS holds in
that framework, then f(z, û, x̂) = z.

We have simulated each of the following three configura-
tions for one thousand times. No attempt has been made to
optimize the regularization parameter λ which was fixed at
λ = 0.002:

SIM1: m = 240, k = 40, n = 1000, α = k, β = 0 and
σ = 0. In this configuration, there is no noise in samples.
Also, x and u are two independent unit-norm signals with
the same support. However, at each of 1000 runs, both the
support and also the matrix A would change randomly. The
average and median SNR between unit norm vectors of u
and x had been only 3.11 and 3.05 dB respectively. Hence
although both signals had the same support, they were totally
different signals in simulations. The correlation coefficient
between SNR of u to û and SNR of x to x̂ was computed
at 0.986. This means that, whenever x was recovered with
smaller errors, then the estimate of u would have smaller
errors as well. This meaningfully high correlation when SNR
of x to u is that low, acknowledges our claim that the quality
of the recovery process in the noiseless and RIPless case is
independent of the signal value and only depends on the
support of signals.

SIM2: m = 600, k = 100, n = 5000, α = β = 2 and
σ2 = 0.001. The average and median SNR for sampling
process in all 2000 recoveries4 both were approximately
32.30 dB. The average and median SNR between x and the
perturbed vector u were respectively 19.01 and 18.07 dB.
The correlation coefficient between SNR of recoveries of u
and x was 0.995.

SIM3: m = 1200, k = 200, n = 3000, α = 10, β = 3
and σ2 = 0.001. The average and median SNR for sampling
process in all 2000 recoveries both were approximately
29.38 dB. The average and the median SNR between x and
the perturbed vector u were 13.42 and 13.18 dB respectively.
Hence, perturbed vectors u are distinctly different from x
in this scenario as well. The correlation coefficient between
SNR of recoveries of u and x was 0.996.

Left column of Figure 1 shows how similar signals x
and u were in each iteration. Qualities of recoveries are
presented in the middle column of Figure 1. The right column
of the same figure investigates whether ISS holds for these
simulations by utilizing the function of f(z, û, x̂), introduced
in equation (11). As stated before, ideally we expect that
f(z, û, x̂) = z. However, it should be noted that, the function
f(z, û, x̂) is sensitive to small permutations in supports of
û and x̂. For instance, assume that three largest coefficients
of û and x̂ are at indices of a, b, c nd b, c, a respectively.
Then although these two vectors have the same support,
we would have f(1, û, x̂) = f(2, û, x̂) = f(3, û, x̂) = 3
which is away from f(z, û, x̂) = z. This should explain some
straight, horizontal lines in our plot. Also, since in SIM2 and

4In each of one thousand iterations, one set of samples is measured for
u and another set of samples is measured for x.
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Fig. 1: Top row: SIM1, middle row: SIM2 and bottom row is SIM3. Left column: SNR (in dB) between the original signal
x and the perturbed signal of u = x+ ∆x as a function of the simulation number. Middle column: SNR of recoveries for
u and x as a function of the simulation number. Right column: f(z, û, x̂) as a function of z. If the magnitude of the plot
at row i and column j is t, it means that out of 1000 simulations, in t times f(j, û, x̂) = i.

SIM3, Card{Support{x}} < Card{Support{u}} then we
expect that f(z, û, x̂) to be fixed at Card{Support{u}} for
small values of z, which explains the bright horizontal lines
for those values of z. As a final note, our arguments in
the previous section were for the worst case scenario and
in practice there are many perturbed problems which are
still in the ISS while they do not meet equations (8) and
(10). On the other hand, we had generated perturbations of
∆x = u−x randomly in our simulations. Consequently, true
ISS conditions might be violated in our simulations, leading
to anomalies in plots f(z, û, x̂). However, as it is clearly
illustrated in Figure 1, the notion of ISS for compressed
sensing holds to very good extent even in those random
simulations since the function f(z, û, x̂) looks like to be
equal to z in most cases

IV. CONCLUSION
Invariant Support Set (ISS) of an optimization problem

is the set of perturbations in the objective function or
constraints of that problem, such that the support of the
solution stays intact. In this paper, we showed that in a
RIPless scenario for the compressed sensing framework, any
problem which can be solved correctly, would have a non-
empty ISS. This means that in the noiseless case, successful
recovery of a fixed but arbitrary signal guarantees that all
other signals with the same support and sign pattern could
be recovered exactly as well. In a noisy setting however,
good recovery of a fixed but arbitrary signal guarantees
that there exist infinitely many other signals, (possibly even
with different supports), which can be recovered with good
precision from their noisy compressive samples.
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